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Microbial communities that reside in the vertebrate gastro-
intestinal tract are tightly connected to many of their host’s 
traits1–3. Nevertheless, we are far from understanding the 

ecological forces that structure these communities, and we therefore 
need to infer and identify the principles and patterns that shape the 
microbiome4. Stochastic and deterministic processes are thought 
to shape community composition. Environmental factors, such as 
pH, host immune system and dietary composition, are considered 
to be dominant in shaping gut microbial communities, a process 
also termed environmental selection5–7. Furthermore, interspecies 
interactions—mutualistic or competitive—may further affect the 
composition of microbial communities and drive their distribution 
patterns8,9. Naturally, these selective forces not only act at the com-
munity level but are also bound to affect the individual members of 
such communities, triggering evolutionary processes such as adap-
tation and strain variability10,11. It is therefore of interest to under-
stand how these ecological forces affect individual species within the 
community and whether they have equal effects on different com-
munity members, such as generalist and specialist species.

From an ecological viewpoint, generalist species can be defined 
as taxa that inhabit different environments or environmental gra-
dients; within these generalist species are members of the core 
microbiome—taxa with high occupancy that persist across multiple 
assemblages associated with a habitat (such as the gut12). Thus, the 
concept of the core microbiome considers persistent and sometimes 
highly abundant microbes in a microbial community that are also 
considered to be stable communities12. Although research during 
the past few years has focused on understanding the role of these 
generalist microbiome members12–14, their persistence across mul-
tiple hosts and habitats is not yet understood. Microbial competi-
tion has recently been suggested to drive the stability of microbial 
communities in the ecosystem15; however, mutualism or skewed 
interspecies interactions (amensalism or commensalism) have 
been observed in ecology to promote diversity and community 

stability13,16–18. Moreover, alternative ecological theories, suggesting 
that generalist species are assemblages of more specialized indi-
viduals11,19 through increased variation among individuals, can also 
explain species persistence20. Here, using the fish gut as a model 
(European seabass), we aimed to identify such generalist core 
microbial populations that are widespread across multiple habitats 
and environmental conditions, and to elucidate the mechanisms 
that enable their patterns of persistence, such as the forces that 
stabilize them as populations and communities. Our findings sug-
gest that the persistence and coexistence of these core microbes are 
maintained through low competition and synergistic interactions, 
as well as intraspecies strain variability.

Results
Habitat filtering by gut part, and not diet, is the major driver 
shaping fish gut microbial communities. To identify micro-
bial generalists, we first defined habitats/environments and their 
microbial inhabitants. We analysed the members of the seabass 
gut microbiome in light of two potential habitat-filtering forces: 
diet and gut part (study design is described in the Methods and 
Supplementary Table 1). Diet is known to affect microbiome com-
position and to act as a habitat filter21. The common gut of a bony 
carnivorous fish, of which European seabass is a good representa-
tive, is composed of three main parts: the pyloric caeca, which are 
finger-like extensions located in the proximal part of the gut; the 
midgut, which is the main part of the gut; and the hindgut22 (Fig. 1a).  
As these parts are connected across the gastrointestinal tube, all 
members of the microbiome could inhabit them equally on the 
assumption that only random forces were at play. However, if the 
parts provide different conditions, instilling habitat filtering, we 
would expect to see different community compositions in each of 
the parts23–26. On the basis of this premise, we compared the two 
selective forces and their relative effects on microbiome compo-
sition. We sampled the three different gut parts—pyloric caeca,  

Core gut microbial communities are maintained by 
beneficial interactions and strain variability in fish
Fotini Kokou   1,2, Goor Sasson1, Jonathan Friedman   3, Stav Eyal1, Ofer Ovadia1, Sheenan Harpaz2, 
Avner Cnaani2 and Itzhak Mizrahi   1*

The term core microbiome describes microbes that are consistently present in a particular habitat. If the conditions in that 
habitat are highly variable, core microbes may also be considered to be ecological generalists. However, little is known about 
whether metabolic competition and microbial interactions influence the ability of some microbes to persist in the core micro-
biome while others cannot. We investigated microbial communities at three sites in the guts of European seabass under four 
dietary conditions. We identified generalist core microbial populations in each gut site that are shared across fish, present 
under multiple diets and persistent over time. We found that core microbes tend to show synergistic growth in co-culture, and 
low levels of predicted and validated metabolic competition. Within core microbial species, we found high levels of intraspecific 
variability and strain-specific habitat specialization. Thus, both intraspecific variability and interspecific facilitation may con-
tribute to the ecological stability of the animal core microbiome.

Nature Microbiology | www.nature.com/naturemicrobiology

mailto:imizrahi@bgu.ac.il
http://orcid.org/0000-0002-3675-3835
http://orcid.org/0000-0001-8476-8030
http://orcid.org/0000-0001-6636-8818
http://www.nature.com/naturemicrobiology


Articles NaTurE MIcrobIology

Pyloric caeca

Midgut Hindgut
StomachEuryarchaeota

Methanobacteriales
E2

Actinobacteria
Actinomycetales
Coriobacteriales

Bacteroidetes
Bacteroidales
Flavobacteriales

Cyanobacteria

Streptophyta

Firmicutes
Bacillales
Lactobacillales
Clostridiales
Erysipelotrichales

Fusobacteria
Fusobacteriales

Caulobacterales
Rhizobiales
Rhodobacterales
Sphingomonadales

Burkholderiales
Neisseriales
Rhodocyclales

Desulfovibrionales

Campylobacterales

100

75

50

25

0

Proteobacteria

Alphaproteobacteria

Betaproteobacteria

Deltaproteobacteria

Epsilonproteobacteria

Gammaproteobacteria
Aeromonadales
Alteromonadales
Enterobacteriales
Oceanospirillales
Pasteurellales
Pseudomonadales
Xanthomonadales

Verrucomicrobia
Verrucomicrobiales

Other (present in <0.01%)
R

el
at

iv
e 

ab
un

da
nc

e 
(%

)

Medium fat
High marine protein

High fat
Low marine protein

Shared between all parts

Shared between midgut and hindgut

Shared between pyloric caeca and hindgut

Shared between pyloric caeca and midgut

Unique to hindgut

Unique to midgut

Unique to pyloric caeca

P = 2 × 10–16

P
er

ce
nt

ag
e 

of
 to

ta
l E

S
V

s ESVs

Diet

60

40

20

0

Shared Unique

Diet

W
ei

gh
te

d 
U

ni
F

ra
c 

di
st

an
ce

P = 2 × 10–34

P = 2.30 × 10–38

P = 2.3 × 10–227P = 9.1 × 10–12

High marine protein

Medium fat

High fat

Low marine protein

Pyloric caeca

Midgut

Hindgut

Gut compartment

Diet

R
ic

hn
es

s

Pyloric caeca

300

200

100

Midgut Hindgut

P = 0.0004
P = 0.0006
P = 0.0006

P = 0.0004
P = 0.0004
P = 0.0010

a

b c

d

e

0.6

0.4

0.2

0

High
 m

ar
ine

 p
ro

te
in

M
ed

ium
 fa

t

High
 fa

t

Lo
w m

ar
ine

 p
ro

te
in

High
 m

ar
ine

 p
ro

te
in

M
ed

ium
 fa

t

High
 fa

t

Lo
w m

ar
ine

 p
ro

te
in

High
 m

ar
ine

 p
ro

te
in

M
ed

ium
 fa

t

High
 fa

t

Lo
w m

ar
ine

 p
ro

te
in

Part

Within
Between

50

80
70

100

80

80
90

60
60

50

100

60

60

100

100

100100

60

100
50

100

100

100

100

10010
0

10
0

100

100

10
0

10
0

10
0

10010
0

10
0

10
0

10
0

10
0

100

100
100

100

100
50

50

100

80
80

80

100

100

100

100

70 80

100

60

100

100

100

10
0

10
0

60

100

80

100

Fig. 1 | Habitat filtering by gut part shapes seabass gut microbial communities. a, The relative abundance of the microbial communities at the order level 
found in different gut compartments (pyloric caeca, midgut and hindgut) of fish that were fed different diets. b, Microbial richness within the different gut 
compartments of fish fed different diets. P-values indicate significant difference from the pyloric caeca (paired two-sided Wilcoxon t-test, 95% CI). Data 
are shown as box plots (n = 9 fish individuals); the horizontal line indicates the median and the whiskers indicate the lowest and highest points within 1.5× 
the interquartile ranges of the lower or upper quartile, respectively. P values with different colours denote the values for each diet. c, Shared and unique 
ESVs between the different gut compartments (two-sided Wilcoxon t-test, 95% CI). Box plots (n = 36 fish individuals) describe the data as in b.  
d, Hierarchical clustering dendrogram with jackknife support (numbers on the branches; only values above 50 are shown in the tree) using weighted 
UniFrac as a metric to compare similarity between different gut compartments. Shapes indicate different diets and colours indicate the different fish gut 
parts. e, Weighted UniFrac distance within and between samples originating from different gut parts or diets (two-sided Wilcoxon t-test, 95% CI; for 
within versus between gut parts, P < 0.0001). Box plots (n = 36 fish individuals) describe the data as in b.
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midgut and hindgut—of 36 European seabass individuals that 
were fed different diets (n = 9 per diet).

Amplicon sequencing of the microbial communities across 
the gut of the seabass revealed significant changes in composition 
between gut parts (Supplementary Table 2a–d). The gut part had 
a stronger effect on shaping microbial communities than the diet, 
as we observed more similarity between the microbial composition 
within gut parts, regardless of diet (Fig. 1a). Moreover, we found 
only a small proportion of shared species between the gut parts, 
although these parts are connected, and a high degree of shared 
species might be expected (Fig. 1c; Wilcoxon t-test, P = 2 × 10−16). 
Among the three gut parts, the pyloric caeca showed significantly 
lower species richness (paired Wilcoxon t-test, P < 0.05; Fig. 1b, 
Supplementary Fig. 1) and diversity (Shannon index and phyloge-
netic diversity; Supplementary Fig. 2a,b). Furthermore, there was 
a gradual increase in the individual variation across the gut, with 
pyloric caecal communities exhibiting the lowest variability in rich-
ness within treatments (Fig. 1b; linear trend for the coefficient of 
variance, r2 = 0.37, P = 0.04). This may suggest that physiological 
conditions along the gut, such as a lower pH measured in the pyloric 
caeca compared with the other gut parts, can act as a selection force 
or habitat filter (Supplementary Fig. 2c) that potentially constrains 
microbial communities and decreases the inter-individual varia-
tion. Indeed, when we analysed our data using clustering analysis 
of beta diversity with the jackknife approach, we found strong sup-
port for microbiome clustering by gut part (Fig. 1d, Supplementary 
Table 2). Specifically, we observed dominance of gut part over diet 
in determining microbiome composition, which was shown by clus-
tering of the communities coming from different diets, primarily by 
gut part (weighted UniFrac, Fig. 1d, Supplementary Fig. 3; permuta-
tional analysis of variance (PERMANOVA) analysis, Supplementary  
Table 2). Moreover, we found a stronger impact of the gut part com-
pared with the diet on the beta-diversity variation of samples (Fig. 1e). 
These findings further strengthen the idea that the conditions along 
the gut serve as strong environmental filters, enabling the establish-
ment of distinct microbial communities in the different parts.

Facilitation and positive interactions are prevalent among iden-
tified generalist core microbes. After identifying the effects of 
different environmental conditions—diet and gut part—on the 
microbial communities, we characterized the niche width of indi-
vidual microbes to classify them as generalists or specialists. We 
defined generalists as microbes that inhabit a wide range of envi-
ronments along the different samples, such as different diets and 
gut parts, and specialists as microbes that have a narrower range 
of occupancy across these different environments. We therefore 
measured the niche width as previously described11,27 for each 
microbe using three different methods: the Shannon diversity 
index, the occupancy across habitats (richness) and the Levin’s 
measure of niche breadth28 (see the ‘Niche width’ section in the 
Methods). Taken together, these methods enabled us to assess the 
niche-width distribution across the microbiomes, looking at each 
dietary regime and gut part as a potential habitat. In this analysis, 
microbes with the highest niche width were defined as generalists 
that occupy multiple habitats, whereas microbes with the lowest 
niche width were defined as specialists that occupy a specific and 
limited number of habitats. We therefore define generalist microbes 
as those that are shared between the upper 10th percentile of the 
distribution of all of the calculated niche-width methods (Fig. 2a, 
Supplementary Fig. 4). We found 8 such generalist species that fell 
into this definition (8 clusters of 97% similarity originating from 
12 exact sequence variants (ESVs) identified as core; Fig. 2b). In 
contrast to most microbes, these generalist microbes were found to 
be present in more than 90% of the different gut parts and diets, 
therefore falling into the core microbe definition. Although these 
generalist microbes contributed almost 60% of the total relative 

abundance (Fig. 2c), they comprised less than 0.5% of the overall 
richness. The distribution of these microbes clearly varied in our 
system (Supplementary Fig. 5), and was affected by gut part, dietary 
treatment or both (Supplementary Fig. 6).

We then examined the persistence of these seabass core gut 
microbes over time. We conducted a time-series experiment in 
which we sampled the three gut parts across different diets. The 
rationale for this experiment stemmed from the possibility that 
some gut microbes are transient residents of gut ecosystems, as 
previously reported29. Such transient taxa, which are usually rare 
members of the microbiome, can occasionally bloom and, there-
fore, could be misleadingly counted as stable residents of the micro-
biome29. The distribution of transient microbiome residents over 
time is expected to follow a bimodal distribution, whereas stable 
residents will show a uniform distribution. Taking this into consid-
eration, we implemented a previously described method for detect-
ing such patterns of transient or resident taxa in the microbiome 
time-series data29 (see the ‘Transient taxa’ section in the Methods). 
This analysis, which was performed across time, diets and gut parts, 
revealed that the identified core microbes are stable residents of the 
seabass gut microbiome, as were most of the gut microbes in this 
study (Supplementary Table 3). Interestingly, when we examined 
other datasets from different studies (Supplementary Table 15),  
these microbes, at the genus level annotation, could be found in 
many gut systems of other fish species (Fig. 2d). Thus, although 
we did not select these core generalist microbes using such criteria, 
they show temporal stability and presence in other fish species, sug-
gesting strong association with the fish gut, and therefore rendering 
them good candidates to study the core microbiome.

Notably, when we examined the correlations and co-occurrence 
patterns between these core microbes (Fig. 3a), we found mainly 
positive interactions. These results contrasted with the mutual-
exclusion patterns observed for other microbiome members in 
this analysis and suggested that the coexistence of these microbes 
is driven by a non-competitive relationship. Indeed, evaluation of 
the metabolic competitive potential of these species, by their meta-
bolically overlapping pathways using NetCmpt30, showed low levels 
of competition (Fig. 3b; see the ‘Shared and unique microbiomes’ 
section in the Methods). These findings suggested that niche par-
titioning contributes to the persistence of these core microbes by 
enabling low levels of competition and potentially positive inter-
actions between them. To test this hypothesis, we isolated and 
obtained all of the core microbes and determined their interactions 
using two approaches: minimal media containing various carbon 
sources and media containing in  vitro digested feed to simulate 
gut conditions (Supplementary Fig. 7; see the ‘In vitro interactions 
among the core microbes’ section in the Methods). This provided 
a further understanding of the potential interactions between core 
microbes, considering interference competition and other types of 
interaction that can occur between microbes31 but are overlooked 
by the co-occurrence networks and the NetCmpt tool. Following 
these analyses, we could not detect any interference interactions on 
the minimal media containing five carbon sources (Supplementary 
Tables 4–9). When we compared the utilization of various substrates 
by the core microbes (see the ‘Substrate utilization’ section in the 
Methods), we observed that core microbes differ in their prefer-
ences for the examined substrates (Supplementary Fig. 9). This 
further suggested that these core microbes partition their niches, 
thereby reducing interspecies competition. We then investigated 
their interactions in simulated gut conditions using the fish’s actual 
in  vitro stomach-digested feed to better understand coexistence 
under natural conditions (see the ‘In vitro interactions among the 
core microbes’ section in the Methods; Supplementary Fig. 7).  
In these experiments, we found either positive or low-level com-
petitive interactions among the core microbes, with a significantly 
higher degree of positive interactions (Fig. 3c–e). We also noted 
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that, in most cases, these pairwise interactions were synergistic; the 
total cell number in the co-cultures exceeded the expected cell num-
ber in the corresponding individual cultures. This was concluded by 
analysing the total 16S rRNA gene copy number in the co-cultures 
compared with the sum of 16S rRNA gene copy numbers in each 
individual culture (Fig. 3e, Supplementary Fig. 8), further support-
ing facilitation of the coexistence of these core species by positive 
interactions (Fig. 3c–e). Taken together, these findings from both 
comparative metabolic potential and co-culturing experiments 
were in agreement and indicated that positive and low-level com-
petitive interactions support stabilization and coexistence of these 
core microbes, potentially through resource partitioning.

Generalist core species show higher strain variability congruent 
with their habitat preferences. According to ecological theories, 
such as the niche variation hypothesis proposed by Van Valen, we 
would expect generalists to tend towards more variability to reduce 
intraspecific competition11,20, especially in depauperate environ-
ments. Inspired by this, we examined the intraspecies variation of 
the clusters that these species belong to and compared the variability 
of the core microbes to that of other members of the microbiome. To 
this end, we clustered all of our ESVs into species-level clusters (97% 
sequence similarity) and measured the strain variability within each 
species cluster across our dataset. We found that core species have 
higher strain variability compared with non-core species (Fig. 4a).  

We next examined whether the different strains of the core species 
show a tendency to inhabit one habitat over another, which would 
indicate their preference for a specific habitat. We analysed the pres-
ence–absence patterns of these strains across the different gut parts 
using the Jaccard similarity metric. Our analysis revealed significant 
clustering of strains of all generalist species according to the gut part 
(PERMANOVA R-statistic = 0.10339, P = 0.001, 95% confidence 
interval (CI); Fig. 4b, Supplementary Fig. 13). Moreover, when exam-
ining the richness of core strains across parts, we observed an oppo-
site pattern compared with the overall richness of the microbiome 
(Figs.1b and 4c). This phenomenon occurred for most of the core and 
some of the highly prevalent microbes (Fig.4c, Supplementary Fig. 10,  
Supplementary Table 16, Supplementary Data for Supplementary 
Table 16). These findings show that generalist microbes have higher 
strain variability with habitat specification.

We then examined whether the habitat tendency patterns are 
the result of radiation of these strains from an ancestor that car-
ried this trait or whether this trait developed in parallel in different 
strains, regardless of their phylogenetic similarity. We created a phy-
logenetic tree for all of the core species strain clusters. Our results 
did not show agreement between habitat tendency and phylogeny 
(Supplementary Fig. 14). Moreover, we found that the strains were 
less similar within a fish than between fish (Fig. 4d), suggesting 
that this preference is an outcome of multiple evolutionary trajec-
tories that converged into this phenotype; nevertheless, many other  
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factors can contribute to variation among hosts, including host gen-
otype and stochastic processes.

Discussion
In recent years, the term core microbiome was coined to describe 
taxa with high occupancy that persist in most of an animal cohort, 

across multiple habitats or environments32,33. These core microor-
ganisms can be viewed as ecologically generalist species that are 
found across multiple changing environmental conditions, such as 
diets and individual hosts, or through time34. We found eight such 
generalist core microbes by defining their niche width using three 
different methods (Figs. 2a and 3b, Supplementary Fig. 4). These 

Pseudomonas fragi

Competition matrix based on metabolic pathways

Pseudomonas veronii

Acinetobacter junii

Limnohabitans planktonicus

Morganella morganii

Janthinobacterium lividum

Stenotrophomonas maltophilia

Aeromonas hydrophila

Pseudomonas fragi
Pseudomonas veronii

Acinetobacter junii

Limnohabitans planktonicus
Morganella morganii

Janthinobacterium lividum

Stenotrophomonas maltophilia

Aeromonas hydrophila

P
se

ud
om

on
as

 fr
ag

i
P

se
ud

om
on

as
 v

er
on

ii

A
ci

ne
to

ba
ct

er
 ju

ni
i

Li
m

no
ha

bi
ta

ns
 p

la
nk

to
ni

cu
s

M
or

ga
ne

lla
 m

or
ga

ni
i

Ja
nt

hi
no

ba
ct

er
iu

m
 li

vi
du

m

S
te

no
tr

op
ho

m
on

as
 m

al
to

ph
ili

a

A
er

om
on

as
 h

yd
ro

ph
ila

A
er

om
on

as
 h

yd
ro

ph
ila

S
te

no
tr

op
ho

m
on

as
 m

al
to

ph
ili

a

Ja
nt

hi
no

ba
ct

er
iu

m
 li

vi
du

m

M
or

ga
ne

lla
 m

or
ga

ni
i

Li
m

no
ha

bi
ta

ns
 p

la
nk

to
ni

cu
s

A
ci

ne
to

ba
ct

er
 ju

ni
i

P
se

ud
om

on
as

 v
er

on
ii

P
se

ud
om

on
as

 fr
ag

i

0.6

0

1.0

Low
competition

High
competition C

om
petition

score

Positive
interactions

Negative
interactions

0

0.5

1.0

1.5

P = 0.0006

A
bs

ol
ut

e 
fo

ld
 c

ha
ng

e
in

 g
ro

w
th

 fr
om

 c
o-

cu
ltu

re
s

co
m

pa
re

d 
to

 m
on

oc
ul

tu
re

s

P
er

ce
nt

ag
e 

ch
an

ge
 fr

om
m

on
oc

ul
tu

re

Core microbes

a

c d e

b

Interaction of isolated core microbes based on
co-culture experiments

Average growth fold change in
co-cultures

Synergistic versus non-synergistic
interactions

Synergistic interactions

P = 0.03

150

100

50

0

–50

–100

Pairwise interactions

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Isolate 1

Isolate 2

Co-culture

Interaction type Fold change

Positive 3
2
1
0
–1
–2
–3

Inertic

Negative

Non-synergistic interactions

Phyla

Co-occurrence

Mutual exclusion

Non-core microbe

Core microbes

Interaction type

Group

Actinobacteria

Bacteroidetes

Euryarchaeota

Firmicutes

Fusobacteria

Proteobacteria

Synergistetes

Verrucomicrobia

Fig. 3 | Facilitation and positive interactions are prevalent among identified generalist core microbes. a, Network of co-occurring ESVs based on 
correlation analysis. Core microbes have strong positive correlations among them. A connection stands for a strong (1,000 most extreme values—negative 
or positive—based on of five methods of ensemble reference: Spearman, Pearson, mutual information, Bray–Curtis and Kullback–Leibler dissimilarity; 
default settings) and significant correlation (q < 0.05, after Benjamini–Hochberg correction; bootstrap, n = 100; permutations, n = 100). The size of each 
node is proportional to the relative abundance of the ESV. The edge thickness corresponds to the statistical significance (the P value) of the correlation—
the thicker the edge, the lower the P value—whereas the edge transparency denotes the strength of the correlation (R). Green edges represent co-
occurrence between two ESVs, red edges represent mutually excluded ESVs. Nodes are coloured by phylum taxonomy. Nodes of core microbes are 
indicated as triangles. b, Competition matrix based on the analysis using NetCmpt (0, no competition; 1, competitive interactions). The matrix is not 
symmetrical as the pairwise interactions between the ESVs may differentially affect each of the microbes. c, Pairwise co-cultivation of the core microbes in 
digested in vitro feed extract for 24 h (experimental design is provided in Supplementary Fig. 7). Colour intensity indicates fold-change increase (positive 
interaction; red) or decrease (negative interaction; blue) relative to single-microbe growth (monoculture). d, Box plots showing the absolute fold change 
in 16S rRNA gene copies from co-cultures in comparison to the single cultures. Positive interactions originating from the co-cultures are shown in red 
and negative interactions are shown in blue. Statistical analysis was performed using two-sided Wilcoxon rank-sum tests, 95% CI. For the box plots 
(n = 8 core microbe in pairwise interactions), the horizontal line indicates the median and the whiskers indicate the lowest and highest points within 1.5× 
the interquartile ranges of the lower or upper quartile, respectively. e, Synergistic interactions are calculated by analysing the total 16S rRNA gene copy 
number in the co-cultures compared with the sum of 16S rRNA gene copy numbers in each individual culture (see Methods; Supplementary  
Fig. 8). Bar plots represent the percentage change in growth (either positive or negative) of each co-culture compared with the monocultures, showing 
that synergistic interactions (pink, synergistic; blue, non-synergistic interactions) are prevalent in the core microbes. We found that the percentage change 
originating from positive and negative interactions was significant; the statistical analysis was performed using a Wilcoxon t-test.
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core species were persistent through time, as determined by our 
time-series experiments (Supplementary Table 3). Moreover, at the 
genus level annotation, the identified core microbes were found to 
be present across different fish hosts that inhabit different environ-
ments, such as sea water and fresh water, and with various feed-
ing habits, such as herbivores, carnivores and omnivores (Fig. 2d). 
Interestingly, these core microbes shared only positive co-occur-
rence patterns, in contrast to other members of the microbiome, 
in which co-exclusion was mostly observed (Fig. 3b). The strong 
co-occurrence patterns between these core microbes might be an 
indication of low levels of competition, potentially due to niche 
partitioning, which would enable these species to coexist. Indeed, 
genomic analysis of metabolic potential and resource utilization of 
the isolates that correspond to these core microbes supported this 
assumption, which is probably the driver of their high prevalence 
and consistency across the individual guts (Fig. 3c–e, Supplementary 
Fig. 8). Moreover, the outcome of our co-culturing experiments 
between these core microbes showed a tendency towards facilita-
tion and low-level competition (Fig. 3d,e). It has been suggested 
that competition promotes stability in the gut ecosystem and that 

cooperation creates dependencies that foster instability in micro-
bial communities15. Indeed, we observed a high number of negative 
interactions among many members of the gut microbial community 
as well as between the core microbes and other community mem-
bers in this study (Fig. 3b). However, it should be noted that despite 
the positive interactions among them, these core microbes did not 
reveal any interdependency for growth as they were also growing 
as isolates; thus, this type of cooperation among the core microbes 
does not seem to be obligatory and is therefore less likely to destabi-
lize the community. Our findings concerning the metabolic poten-
tial and co-culturing assays therefore highlight niche partitioning 
and microbe facilitation as important determinants of core-microbe 
interactions that potentially contribute to their persistence.

When we looked at the species level, we found that these core 
microbes have higher strain variability than other microbiome mem-
bers, and this variability was in agreement with habitat conditions 
across the gut. Looking at the strain level of these core microbes, 
we observed a differential distribution along the gut, visualized as 
clear strain clusters according to the gut parts, especially the pyloric 
caeca, indicating habitat specialization (Fig. 4b). Furthermore, we 
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Fig. 4 | Generalist core species show higher strain variability, which is congruent with their habitat preferences. a, A histogram showing the strain 
richness within a species (97% sequence similarity clusters) comparing core versus randomly sampled non-core species (see the ‘Strain variation’ section 
in the Methods). Data are average strain richness in a pool of 8 microbes. The red bar shows the average number of strains of the core microbes; the blue 
bars denote the average number of strains of randomly selected pools of 8 microbes, iterated 100 times. Significance (P = 0.0099) was assessed using 
one-sided Mann–Whitney U-tests (95% CI). Inset: the box plots show the strain richness within a species (97% sequence similarity clusters) comparing 
core versus non-core species with more than 3,000 sequence read depth (see the ‘Strain variation’ section in the Methods). Significance (P = 0.016) 
was assessed using two-sided Mann–Whitney U-tests (95% CI). Data are shown as box plots; the horizontal line indicates the median of the sum of 
strains for all of the core species and the whiskers indicate the lowest and highest point within 1.5× the interquartile ranges of the lower or upper quartile, 
respectively. b, Principal coordinates analysis of samples (PERMANOVA, P = 0.001, 95% CI; n = 9 fish per diet and 3 parts per fish; see Methods) based 
on the presence–absence patterns of strains (Jaccard metric) originating from the core microbe cluster by gut part (colour) and diet (shape). c, Strain 
richness originating from all of the core microbes across the gut parts (n = 51 total strains from 8 core microbes). Statistical analyses were performed using 
paired two-sided Wilcoxon rank-sum tests with Benjamini–Hochberg correction (P < 0.05, 95% CI). Box plots describe the data as the inset of a. d, The 
average phylogenetic distances of strains shared between fish and strains (n = 8 core microbes) within a fish. Statistical analyses were performed using 
paired two-sided Wilcoxon rank-sum tests (P = 0.0078, 95% CI). Box plots describe the data as the inset of a.
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show that these core species have higher strain (intraspecies) vari-
ability than other species (Fig. 4a), and that this increase is exhibited 
when the overall microbiome richness decreases (Figs. 1b and 4c).  
Together, these two patterns suggest that the higher variability of 
these core microbes reduces intraspecific competition, poten-
tially enabling them to persist across habitats and multiple hosts. 
According to the niche variation and expansion hypothesis—which 
has only been examined for macroorganisms such as birds35–37, car-
nivorous mammals38 and lizards39—generalist species should have 
higher individual variability than species with lower occupancy11,20. 
Here we provide support for this theory in the microbial world, as 
these core microbiome species, which are considered to be general-
ists, were more variable than their specialist counterparts. According 
to this theory, we would also expect the variability of the core spe-
cies to increase even further when competition with other species is 
reduced, for example, when environmental selection decreases the 
number of species in a given habitat (Fig. 1b, Supplementary Fig. 2).

We found that the strains between fish are more phylogenetically 
related than those within fish. Moreover, the specification process 
was not associated with closer phylogenetic distances between the 
strains of the different species (Supplementary Fig. 14), suggest-
ing that the evolutionary trajectories to achieve this adaptation are 
diverse and, therefore, different strains can develop it in parallel and 
through independent evolutionary adaptation processes. Although 
there is evidence from both microbial communities in general, and 
gut-associated communities in particular, that greater 16S rRNA 
gene amplicon variation in this range of similarity implies greater 
differences in gene content40–42, exploring the genomes of these 
strains for their specific functional adaptations would shed light on 
these evolutionary trajectories.

In this study, we show that core gut microbes tend to be more 
ecologically and genetically variable. This variability is accompanied 
by habitat specialization and, therefore, a reduction in intraspecies 
competition, enabling ecological stability and dispersal across hosts. 
Moreover, we show facilitation and low levels of interspecies com-
petition between these core microbes, potentially due to resource 
partitioning. These findings could explain the high occupancy of 
certain microbial species in gut environments, species that are often 
referred to as core microbes.

Methods
Experimental design and sampling. The experimental procedures used in 
this study were approved by the Animal Policy and Welfare Committee of the 
Agricultural Research Organization (approval number IL-241/10) and were in 
accordance with the guidelines of the Israel Council on Animal Care. In this study, 
European seabass (Dicentrarchus labrax), an agriculturally important carnivorous 
fish with a typical gastrointestinal tract, was obtained from a commercial hatchery 
(Maagan Michael, Israel) and was housed in 250 l experimental indoor tanks 
equipped with recirculating systems. Seabass individuals were randomly and 
evenly distributed in triplicate groups (randomization) and, after adaptation to 
experimental conditions, the groups were fed 4 experimental diets for 6 weeks: a 
high-marine-protein diet, a medium-fat diet, a high-fat diet and a low-marine-
protein diet (Supplementary Table 1). As the focus of our broad analysis around 
different microbial species distribution and their potential relationship to 
physiological functions, we aimed for a representative sample size that would cover 
the different microbial taxa in the different fish gut parts. For this purpose, we 
performed a rarefaction curve, taking into account different sample sizes and read 
depths, and we reached a visible sample rarefaction plateau (Supplementary Fig. 1).  
At the end of the experiment, three fish from each tank were randomly selected 
and their guts were dissected using sterile instruments and separated into pyloric 
caeca, foregut and hindgut (Fig. 1a). After dissection, each sample was ground, 
frozen and stored at −80 °C for further analysis. Sampling was performed after a 
1 d fasting period. Each gut part of an individual fish represents a research sample. 
These samples were taken from seabass intestinal tract that originated from 
the same population (same parents). The age of the animals was approximately 
6–7 months (approximately 10 g in weight). At this stage, all of the animals are 
sexually immature. Throughout the trial, all of the treatments were handled in a 
similar manner by the same trained research technician of the institute. Samples 
for each time point were collected during the same day by trained scientific 
personnel. After anaesthesia using clove oil, fish from each tank were randomly 
selected and their guts were dissected using sterile instruments. The researchers 

analysed the data using the same computational tools and procedures and 
therefore blinding was irrelevant.

DNA extraction. Bacterial DNA was isolated from gut samples using the protocol 
described previously by Roeselers et al.43 with some modifications44. Excised 
intestines were combined in 2.0 ml screw-cap tubes with 0.5 mm and 1 mm silica 
beads (Biospec), 400 ml 50 mM sodium phosphate buffer (pH 8.0) and 200 ml lysis 
solution containing 5% (w/v) sodium dodecyl sulfate, 0.5 M Tris-HCl (pH 8.0) and 
0.1 M NaCl. Samples were homogenized in a bead beater for 5 min on high speed. 
The supernatant was transferred to new tubes and lysozyme (Sigma) was added up 
to a final concentration of 2 mg ml−1, followed by incubation at 42 °C for 1 h and 
then 37 °C for 1 h. The solution was then sequentially extracted using TE (10 mM 
Tris-HCl pH 8.0, 1 mM EDTA), saturated phenol, phenol–chloroform (1:1 v/v) 
and chloroform–isoamyl alcohol (24:1 v/v). Finally, DNA in the aqueous phase 
was precipitated with 0.1 volume 3 M sodium acetate (pH 5.2) and 0.7 volume 
isopropanol. The concentration of DNA in the solution was measured using a 
Nanodrop 2000 UV-Vis spectrophotometer (Thermo Scientific) and the DNA was 
stored at −20 °C for further analysis. Only samples that resulted in a high yield of 
high-quality DNA were used for subsequent analyses.

Sequencing of the gut microbiome. Sequencing of the PCR-amplified V4 
region of 16S rRNA was performed using a MiSeq 2000 Next Generation 
system (Illumina). First, amplification of the V4 region using the primers 515F 
(5′-GTGCCAGCMGCCGCGGTAA-3′) and 806R (each reverse primer contained 
a different 12 bp index) and the enzyme HotStar Taq (5 U μl−1; Qiagen), was 
performed under the following conditions: 94 °C for 15 min, followed by 35 cycles 
of 94 °C for 45 s, 50 °C for 60 s and 72 °C for 90 s, and a final elongation step at 72 °C 
for 10 min. The PCR product (380 bp) was cleaned using a PCR clean-up kit (DNA 
Clean & Concentrator, Zymo Research) and quantified for fragments containing 
the Illumina adapters. Amplification involved initial denaturation at 95 °C for 
15 min and then 40 cycles at 95 °C for 10 s followed by annealing at 60 °C for 20 s 
and extension at 72 °C for 30 s. The product was quantified using a standard curve 
with serial DNA concentrations (0.1–10 nM). Finally, the samples were equimolarly 
diluted to a concentration of 0.4 nM and prepared for sequencing according to the 
manufacturer’s instructions. Data quality control and analyses were performed 
using the DADA2 and QIIME 2 pipeline (v.11.2018; https://qiime2.org). DADA245 
was applied to model and correct Illumina-sequenced amplicon errors, using the 
option of pooling all of the samples in the paired-end merged reads (https://github.
com/benjjneb/dada2). DADA2 resolves differences at the single-nucleotide level, 
and the end product is an amplicon sequence variant table, which is a higher-
resolution analogue of the traditional operational taxonomic unit (OTU) table, 
recording the number of times each ESV was observed in each sample (100% 
sequence identity). Taxonomy was assigned using the Ribosomal Database Project 
Classifier46 against the 16S rRNA gene reference Greengenes database (v.13.8)47. 
Owing to variation of sequence depths among samples, all of the samples were 
normalized to the lowest depth by subsampling (6,000 reads per sample); samples 
below 4,000 reads were discarded.

Quantification of sequencing noise. To quantify the variation of sequencing noise 
in our dataset, we used two approaches as follows.

In the first approach, we sequenced five biological samples with four technical 
replicates (different barcodes) as we would expect that technical replicates 
should give rise to similar frequencies of sequencing errors. We followed the 
DADA2 approach, as described in the ‘Sequencing of gut microbiome’ and ‘Strain 
variation’ sections. We then calculated the coefficient of variation for the number 
of strains between the technical and biological replicates to measure the overall 
sequencing variation at the strain level (ESV; Supplementary Fig. 11a). Next, we 
aimed to quantify similarities between biological and technical replicates using 
a phylogenetic distance matrix. As biological replicates, we randomly selected 
samples originating from different parts and different dietary treatments (that is, 
midgut from fish originating from high-marine-protein and low-marine-protein 
diets); detailed information is provided in Supplementary Table 19. We used the 
weighted UniFrac distance metric to calculate the similarities of these samples on 
the basis of the phylogenetic distances of their strains. Our results showed a higher 
similarity in the phylogenetic distances of strains coming from the technical versus 
biological replicates, whereas there was a higher variation in phylogenetic distances 
within the biological replicates (Supplementary Fig. 11b).

In the second approach, we followed the method described by Jing et al.48. 
We tested whether random sequencing errors can account for the abundance of 
strains. DADA245 has been reported to have an error rate between 10−6 to 10−8. We 
therefore took a conservative and stringent approach and accounted for an error 
rate of both 10−5 and 10−6 to evaluate whether the strain variation was originating 
from random sequencing errors, which was our null hypothesis. Our results 
showed that the null hypothesis was rejected for around 87% and 93% of the 
overall species (97% OTU clusters) for these two error rates. The results for each 
species are presented in Supplementary Table 17. Note that in this file, ‘true’ means 
that the P value was significant, and that the null hypothesis was rejected and there 
are no probable sequencing errors within this species. Specifically, all of the core 
species were not suspected to have sequencing errors.
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Comparison of gut communities. Alpha diversity was calculated using richness 
(number of observed species), Shannon and phylogenetic diversity. Cluster 
analyses exploring the similarities among gut-community compositions of 
different samples were performed using phylogeny-based approaches (UniFrac49). 
A neighbour-joining tree of all of the processed reads was created using FastTree50 
(v.2.1, default settings), which was subsequently used to calculate the weighted 
UniFrac matrix. The resulting distance matrix was visualized using a UPGMA 
dendrogram in MEGA 6.051. To directly measure the robustness of individual 
UPGMA clusters, we performed jackknifing by repeatedly resampling a subset of 
4,000 reads from each sample.

Transient taxa. To identify potential transient taxa in our dataset, we included a 
time-series experiment. It consisted of a 6 week feeding trial with different diets 
for European seabass. During these 6 weeks, samples were taken from the different 
diets (4 diets; Supplementary Table 1) and different gut parts (pyloric caeca, midgut 
and hindgut) at several time points. We sequenced the 395 samples originating 
from three time points—1, 2 and 6 weeks from the start of the trial. Data were 
submitted to the Sequence Read Archive (SRA) database under submission 
number SUB3969450. For the analysis, we applied a method described by  
Shade et al.29 to detect transient taxa, which follow a bimodal distribution over 
time (rare taxa that, depending on the conditions, become temporarily highly 
abundant). Specifically, the statistical method for detecting a bimodal distribution 
computes the coefficient of bimodality, b. We calculated the b coefficient for all of 
the ESVs in our dataset across time (in all of the different parts and different diets).

From the distribution of a taxon’s levels of abundance with time, the coefficient 
of bimodality, b, is calculated as follows (where x is the abundance of the taxon, 
and i gives the time point:

b ¼ 1þ skewness2
� �

kurtosisþ 3ð Þ

where skewness is defined as:
Pn

i¼1ðxi� �xÞ3=n
Pn

i¼1 xi� �xð Þ2=n
 3=2

and kurtosis is defined as:
Pn

i¼1 xi� �xð Þ4=n
Pn

i¼1 xi� �xð Þ2=n
 2

A taxon is considered to be transient or conditionally rare29 when its b is more 
than 0.9 and its abundance is more than 0.01%.

Niche width. We used three methods to analyse niche width. The first method 
was Shannon diversity, as previously used in studies in macroecology11; this 
method reflects both the number of different habitats that each species occupies 
and the evenness with which they occur and is also suitable for a high number 
of samples. The second method was the unweighted richness of habitats, and 
the third was Levins’ niche breadth28, which defines habitat specialization as a 
function of uniformity of the distribution of species abundance among habitats28,52. 
Within each habitat (samples originating from different diets and gut parts), 
we used the frequencies of microbial taxa across the seabass gut to calculate the 
different indices as measures of population niche width11,53. Taxa with higher 
niche width values are those that use a broader range of habitats (that is, species 
that are more equally distributed across samples and are found in more of them). 
Thus, taxa with higher and lower values of niche width can be considered to be 
generalists and specialists, respectively. We then calculated the niche width and 
found that 8 microbes, defined as core microbes (12 ESVs—shared between the 
parts and diets—clustered into 8 clusters at 97% similarity), fall within the upper 
tail distribution of all three indices, which we defined as generalist microbes 
(Supplementary Fig. 4, Supplementary Table 10).

Shared and unique microbiomes. Analysis of shared and unique microbes (ESVs) 
was conducted on the basis of the table generated by DADA2. The shared microbes 
were defined as those that were present in at least 90% of the samples for either 
each fish gut part or each diet. The unique microbes were arbitrarily defined as 
those that were present in more than 90% of only one of the fish gut parts or diet 
samples and were not found in the other types of sample. The closest bacterial 
genomes of the core microbes, as annotated by BLAST54, were obtained from NCBI 
and uploaded to the RAST server55 (default settings; Supplementary Table 11),  
in which their predicted genes were functionally annotated by KEGG56. These 
predicted functional profiles in the form of enzyme category (EC) numbers were 
supplied to NetCmpt30 to calculate the competitive potential between each species 
pair. The NetCmpt tool enables calculation of the competitive potential between 
bacterial pairs by simply providing the species-specific content of EC reactions. 
In brief, given the EC list input, the NetCmpt tool constructs species-specific 
networks and metabolic environments. Then, for each species pair (considering 
all of the possible pairwise combinations), it constructs pair-specific environments 
comprising all of the non-overlapping metabolites of a given pairwise combination.

In vitro interactions among the core microbes. To isolate the core microbes from 
seabass gut, different microbiological media were used (nutrient agar, Lysogeny 
Broth, King B; Supplementary Table 12), following serial dilutions (0–103) of 
homogenized gut tissue in 0.9% saline solution. The identity of each microbe was 
verified by Sanger sequencing of the V3–V4 region of the 16S rDNA (Hylabs) 
using the primers 27F (5′-AGAGTTTGATCMTGGCTCAG-3′) and 1525R 
(5′-AAGGAGGTGWTCCARCC-3′) and annotation with BLAST54. The bacteria 
that we did not succeed in isolating were obtained from DSMZ (Supplementary 
Table 13). To explore competitive/inhibitory interactions among the core microbes, 
in vitro cross-streak pairwise assays were performed in different media—nutrient 
agar and Davis minimal media—by adding different carbon sources: glucose, 
cellulose, phosphatidylcholine, cysteine and casein. Triplicates of bacterial strain 
pairs, freshly prepared and adjusted to the same optical density at 600 nm (OD600) 
after washing in sterile PBS (phosphate buffer and saline solution) (pH 7.0), were 
streaked (10 µl) across different media plates and the plates were then incubated 
for 72 h at 28 °C. Macroscopic growth was observed for potential inhibitory activity.

A co-culture assay between pairs of core microbes was performed using 
in vitro digested seabass feed. The digested feed was prepared by adding 5 g of a 
commercial European seabass feed to sterile 50 ml tubes containing 0.1 N HCl 
and 0.2% (w/v) pepsin (~pH 2–3). The feed was digested overnight in a shaker 
incubator at room temperature. The next day, the tubes were centrifuged at 
10,500g for 20 min; the supernatant pH was adjusted to 7 by titrating with sodium 
bicarbonate and filtered to sterile using 0.22-µm-pore filters. At the start of the 
co-culture experiment, single colonies were grown for 24 h in 3 ml nutrient agar 
medium. Cells were centrifuged at 6,000g for 15 min and washed three times with 
0.9% sterile saline to remove any excess medium. The cells were then adjusted to 
an OD600 of 0.2 using 0.9% sterile saline and added to 96-well sterile flat-bottom 
plates containing 100 µl of feed extract per well. Each well contained different pairs 
of core microbes (50 µl of each microbe) in triplicate (36 pairwise interactions, and 
8 controls—single microbes). The co-cultures were grown for 24 h at 28 °C and 
mixed on a shaker rotating at 250 r.p.m. To measure relative abundance, DNA was 
extracted from a 10 µl sample from each well using the Prepman Ultra Kit (Applied 
Biosystems) following the manufacturer’s instructions. The relative abundance 
of each microbe was then measured by quantitative PCR, using species-specific 
primers (Supplementary Table 14). Cross-reactivity of the designed primers was 
validated with 1% agarose gels for each specific primer pair using the extracted 
DNA from each of the 8 core microbes (Supplementary Fig. 12). The fold change 
in growth of each microbe was calculated in comparison to the growth of single 
microbes as the control.

Substrate utilization. After isolating or obtaining the core microbes (see the 
‘In vitro interactions among the core microbes’ section; Supplementary Fig. 7, 
Supplementary Tables 12 and 13), we evaluated their potential for utilization 
of various substrates, using Ecoplate (BIOLOG). Ecoplate is a fingerprinting 
method that elaborates different substrates to reveal the physiological profile of 
different microbes57. The core bacteria were grown in liquid cultures containing 
nutrient agar overnight at 28 °C, their growth was evaluated by OD600. After being 
washed with sterile PBS and centrifuged to remove any nutrient residue, they were 
inoculated in 96-microwell plates in triplicates per microbe and were grown for 
72 h, according to BIOLOG instructions for Ecoplate.

Fish-gut metagenomes. To compare our findings with data from previously 
published fish-gut metagenome studies, we reanalysed those published sequencing 
datasets using the QIIME58 closed reference protocol against the 97% similarity to 
the Greengenes database47 (most recent). The studies included in the analysis are 
listed in Supplementary Table 15.

Strain variation. The 16S rRNA gene is commonly used as a molecular marker for 
microbial community composition and structure analysis. Such analysis generally 
relies on classification-based approaches that make taxonomic assignments 
by comparing each DNA sequence to reference databases, or clustering-based 
methods that group together multiple sequences as taxon-independent units 
using a sequence-similarity threshold; both approaches include intrinsic critical 
limitations. Analyses that classify sequence reads by similarity to taxonomic 
database entries may provide poorly resolved descriptions of diversity, especially 
for samples that are collected from high-diversity environments. Although the 
16S rRNA gene has limited specificity (for example, two distant organisms may 
have almost identical genes), it is very sensitive—a single nucleotide difference at 
the gene level can reflect vast genomic differences59. Unravelling the relationships 
between bacteria and their environment often requires information about 
microbial diversity on a finer scale. Sequence similarity of 97% at the 16S rRNA 
gene is accepted to be a measure that clusters strains of the same species. Thus, 
very similar, but slightly distinct, gene sequences represent different microbes in a 
community. We therefore quantified the number of strains—that is, ESVs—within 
each 97% species–OTU cluster. More specifically, the total subsampled ESVs 
were clustered into species at 97% sequence identity using the ‘vsearch cluster-
features-de-novo’ command in QIIME 2 (v.2018-11). Richness was calculated for 
each species measuring the number of ESVs that exist within each. Phylogenetic 
distances between ESVs were calculated using FastTree60 (v.2.1, default settings).
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Statistical analysis. Kruskal–Wallis one-way analysis of variance and the pairwise 
comparison Wilcoxon paired t-test were used to test whether the means and 
standard deviations of alpha-diversity values between different diet categories 
were significantly different (P < 0.05) and to test strain richness (using the wilcox.
test R package). Wilcoxon rank-sum test was used to test for shared and unique 
taxa within the different gut parts. Corrections for P values were applied whenever 
stated using R p.adjust. Clustering significance for the Jaccard metric was evaluated 
with ANOSIM and two-way PERMANOVA for the factors gut part and diet  
(R package vegan). Heat maps and graphs were created using R (packages vegan 
and ggplot2). The CoNet tool was used61 to identify and visualize significant  
co-occurrence patterns within the gut microbial communities. All of the 
experiments were performed in triplicates.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Sequencing data are provided at the NCBI (SRA) database under the study 
accession code SRP118834. The non-sequencing related data are provided in 
Supplementary Data 1.
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.
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A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Metagenomes were collected from MG-RAST: http://www.mcs.anl.gov/project/mg-rast-metagenomics-rast-server, and the SRA 
database, and information on their source (published work) is referred in Supplementary Table 15.

Data analysis All the software used for data analysis is available online: 
R software - version 3.5.1 - packages: vegan, ggplot2, heatmap3, bipartite, picante, MASS. 
NetCmpt - Kreimer, A., Doron-Faigenboim, A., Borenstein, E. & Freilich, S. NetCmpt: a network-based tool for calculating the metabolic 
competition between bacterial species. Bioinformatics 28, 2195-2197, doi:10.1093/bioinformatics/bts323 (2012). 
CoNet - version 1.1.1 beta and Cytoscape - version 3.7.1. 
QIIME2 - https://qiime2.org/ 
DADA2 - package in R 
FastTree, 2.1 version 
MEGA, 6.0 version
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Data availability. Sequencing data can be found at the NCBI (SRA) database under the study accession code SRP118834 and  SUB396945. Non-sequencing data are 
available in Supplementary Data Tables 1, 16 and 17. 
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Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description The animal trial included a 6 week experiment with 3 sampling points (1st, 2nd and last week). Four different diets (in triplicate 
groups) consisting of different nutrient levels (protein and fat), as described in the Methods section, were administered in juvenile 
European sea bass. At the end of the trial, 9 randomly selected animals per group were sampled and their intestine was dissected 
into 3 parts (pyloric caeca, midgut, hindgut; See Figure 1). Thus, 3 intestinal samples were collected per each individual fish - a total 
of 36 fish - and subjected to 16S rRNA gene amplicon sequencing analysis (after DNA extraction).

Research sample Each gut part of an individual fish represents a research sample. These samples were taken from European sea bass (Dicentrarchus 
labrax) intestinal tract that were brought to the laboratory from a commercial hatchery (Maagan Michael, Israel), originating from 
the same population (same parents). The age of the animals was approximately 6-7 months (approximately 10 g in weight). At this 
stage, the animals are all sexually immature.

Sampling strategy As the focus of our broad analysis around different microbial species distribution and their potential relationship to physiological 
functions, we aimed at a representative sample size that would cover the different microbial taxa in the different fish gut parts. For 
this purpose, we did a rarefaction curve taking different sample sizes and read depths and we reached a visible sample rarefaction 
plateau (Supplementary Figure S1).

Data collection Throughout the trial all treatments were handled in a similar manner by the same trained research technician of the institute. 
Samples for each time point were collected during the same day, by trained scientific personnel. After anesthesia using clove oil, fish 
from each tank were randomly selected and their guts were dissected using sterile instruments and separated into pyloric caeca, 
foregut and hindgut. Samples were taken both for DNA extraction and bacteria isolation kept in glycerol.

Timing and spatial scale The animal experimental trial lasted in total 6 weeks. Samples were taken after week 1, 2, and at the end point (6th week). The 
experimental setup consisted of three systems, each containing six 250-l tanks and a central main biofilter of 350 l, were the fish 
were kept throughout both the whole experimental trial and the acclimatization period (1 month before).

Data exclusions Four sample were discarded due to insufficient sequencing depths. 
After quality filtering, reads that were much below a 4000 sequence depth were excluded. This sequence depth was selected based 
on the rarefaction curves, reaching the minimum depth for a plateau. 

Reproducibility The animal experiment was performed successfully in triplicate groups for each treatment. Concerning the microbial interaction trials 
(liquid and agar media), the trials were performed successfully in triplicates (96-well plates and agar plates, respectively).

Randomization Concerning the animal experiment, animals (fish) were randomly allocated and were in equal numbers in each experimental group 
(diet). The size of the animals was measured and animals deviating from the mean were removed, in order not to have significantly 
different size between the groups. The samples used for the analysis originated from randomly selected fish from each experimental 
group. 
The experimental setup consisted of three systems, each containing six 250-l tanks and a central main biofilter of 350 l. The 
experimental feed was given in triplicate for each diet with random assignment. Each of the diets was represented in each of the 
three systems used to assess the influence of biofilter on intestinal bacterial community. Moreover, ANOSIM did not reveal any 
clustering of samples according to biofilter (Supplementary Table 18).

Blinding The experimental procedure was applied by research technicians who were unaware to the meaning of the different treatments and 
was therefore unaffected by it. Additionally, the investigators analyzed the data using the same computational tools and procedures 
and therefore make blinding irrelevant.

Did the study involve field work? Yes No

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology
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Human research participants

Clinical data

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals For the study, European sea bass (Dicentrarchus labrax) were involved, brought to the laboratory from a 
commercial hatchery (Maagan Michael, Israel), originating from the same population. The age of the animals was approximately 
6-7 months (approximately 10 g in weight). At this stage, the animals are all sexually immature.

Wild animals The study did not involve wild animals.

Field-collected samples The study did not involve samples collected from the field.

Ethics oversight The experimental procedures used in the present study were approved by the Animal Policy and Welfare Committee of the 
Agricultural Research Organization (approval number IL-241/10) and were in accordance with the guidelines of the Israel Council 
on Animal Care.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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